
A Linux-Based Multi-Interface Real-Time Controller

for Rapid Prototyping of Robotic Systems

Junyoung Kim* and Hyun-Joon Chung

Korea Institute of Robotics & Technology Convergence, South Korea

This study focuses on developing a Linux-based real-time

(RT) controller capable of operating with multiple

communication interfaces. A key contribution of this

research is the simultaneous use of various interfaces

commonly applied in the control of robotic and mechatronic

systems, facilitating rapid prototyping by decreasing the

interface dependency of the system components. To

meet the demands of various system development, the

controller integrates major communication protocols, such as

EtherCAT, CAN, and DAQ devices widely used in robotics

and mechatronics.

In addition to supporting these interfaces, the controller

offers a straightforward method for managing both RT

and non-RT threads. This is intended to enable the

implementation of a synchronized, multi-interface

controller while supporting the integration of higher-

level tasks, such as a GUI, computer vision, AI-based

services, and communication with external control networks.

This flexibility allows the controller to handle a range of

advanced functionalities without compromising real-time

performance.

Experimental validation confirms that the developed

controller maintains accurate sampling periods for all RT

threads, even when non-RT tasks such as the GUI are

running. Low latency measurements further verify that

the system preserves real-time performance, ensuring

stable and reliable operation in multi-interface

applications.

Environment & Controller Configuration
• SBC: Small size & low power consumption

 Compatible for robot (mobile)

• Preempt_RT: Low hardware dependency, Standard 

debugging and programming environment

 Suitable for testing & prototyping

RT controller with multi-interfaces for rapid prototyping 

of the robotic system

• Necessity:

• To minimize trade-offs in decision-making process 

when selecting components

• To test various components and interfaces to find the 

optimal environment

• Requirements:

• Includes major communication interfaces for robot 

systems: EtherCAT, CAN, DAQ

• Allocates each interface on individual RT threads to 

simplify the integration procedure among the interfaces

Abstract

Problem Statement

Methods

Results Conclusion

IEEE RTC 2024 - October 8-10, 2024 - IIT, Chicago, IL, USA 

Acknowledgments

This work was supported by the Challengeable Future Defense Technology Research and 

Development Program through the Agency For Defense Development(ADD) funded by 

the Defense Acquisition Program Administration(DAPA) in 2024(No. 915052101).

Controller S/W Architecture
• RT threads for each interface

 Simple to manage and expand by adding new interface

• Non-RT thread for utilizing GUI or high level tasks

• Mutex for thread-safe synchronization of data obtained from each 

interface

Threads Synchronization by Mutex
• RT controller proper sampling & locking mechanism

• TimedLock: Try to lock mutex, waiting for up to the rest of 

the current period (best effort to sync, not to corrupt RT)

• TryLock: Minimize load on the mutex (not necessary task)

• Lock: Wait until the command is delivered (Necessary task)

This study developed a Linux-based real-time

controller that supports multiple communication

interfaces, offering flexibility and efficiency in robotic and

mechatronic applications.

The integration of major communication protocols,

including EtherCAT, CAN, and DAQ, may enable

effective in reducing system component dependency,

facilitating rapid prototyping across diverse systems.

Furthermore, the controller’s design allows for the

synchronized management of both RT and non-RT

threads, enabling the potential integration of

advanced functionalities such as GUIs, AI-based

services, and external network communication in future

implementations without compromising real-time

performance.

Experimental validation demonstrated that the controller

maintains consistent sampling periods for RT threads

and exhibits low latency, even with non-RT tasks in

operation. These results indicate that the proposed

controller can reliably operate in complex multi-

interface environments while ensuring stability and

precision. Future work may explore the practical

implementation of these advanced functionalities and

further optimization of RT and non-RT task management

to enhance performance and usability.

CAN-based
Sensors &
Actuators

EtherCAT Master

Signal-based
Sensors &
Actuators

RT

Non-RT

Communication Interface
Thread-safe RT data transfer
Thread-safe non-RT data transferRobot Control Software

Visualization

Operator
command

Sub
Controller2

Main
Controller

Sub
Controller1

User Interface (GUI, Wireless controller…) / AI task generator

CAN DAQ

Sensor data
Command

Sensor data
Command

EtherCAT-based
Sensors &
Actuators

Robot HardwareInterface allocation per thread is an example

PCI express

Analog, Digital I/O
Pulse Counter

Robot & Mechatronics Systems

Motor Controllers, Sensors, Switches…

Main
Controller
RT Thread

Non-RT

Shared variables (Data/Heap Segment)

Shared variables (Data Segment)

Sub
Controller
RT Thread

TimedLock

TimedLock

Compute 

Algorithm

Interface

I/O

RT Task

RT
Task

RT
Task

RT
Task

Unlock

Unlock

Rest Time Calculation

TryLock Unlock

TryLock

Unlock

GUI
Event

Periodic
Event

TimedLock

High Task
Command

Lock

RT Performance Test with Jitter Analysis
• Non-RT GUI: Graph, Interaction button, and Real-time 

jitter logger

• With/Without load Injection on system with stress tool

• Sampling rate of 1ms (1kHz frequency) for all RT threads

Jitter analysis
• Affordable maximum jitter of RT threads

: 128(EtherCAT), 116(CAN), 139(DAQ) μs

• Deterministic and timeliness RT performance with non-

RT and other system loads

1

10

100

1000

0 7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

1
0

5

1
1

2

1
1

9

1
2

6

1
3

3

1
4

0

1
4

7

Jitter 

RT1: EtherCAT RT2: CAN RT3: DAQ

N
u

m
b

er
 o

f 
Sa

m
p

le
s

(Correspondence: Hyun-Joon Chung, hjchung@kiro.re.kr)


