
Securing the Smart Contract:
A Framework on the Security of Smart Contracts Utilizing Solidity

Makar, Brendan*
Oakland University, Department of Computer Science and Engineering

With the advent of Bitcoin and blockchain technology, numerous
platforms have emerged with innovative use cases beyond serving as
alternatives to traditional currency. One prominent application is the
development of smart contracts, particularly on Ethereum, the second
most popular blockchain platform. Ethereum's smart contracts leverage
coding languages like Solidity and Vyper, with Solidity being the most
widely adopted. However, given the novelty of blockchain, smart
contracts, and Solidity, there are concerns about the lack of a
standardized security framework for secure coding practices.
Additionally, the Ethereum Virtual Machine (EVM) has limitations,
such as stack size and standards, which present challenges for
developers.

The paper aims to establish a practical and user-friendly security
framework to support the development of secure smart contracts on
Ethereum, focusing on Solidity. The research covers current works in
the field, guidance on selecting secure libraries, and methods for
identifying and mitigating vulnerabilities. The framework is tested
using open-source tools like Truffle Suite and Ganache to ensure
robust smart contract development on the Ethereum blockchain.

1. Blockchain technology enables
decentralized, secure transactions, with
Ethereum emerging as a leading
platform for smart contract
development. Solidity, Ethereum's
primary language, is popular for its
simplicity and extensive tool support,
allowing faster development compared
to languages like Pact and Liquidity.
However, while Solidity offers ease of
use, it also presents challenges in
debugging and security, increasing the
risk of errors.

2. Developing secure smart contracts using
Solidity presents significant challenges.
Solidity’s ease of use can lead to errors
during the development process,
particularly in debugging and security,
Common security vulnerabilities
introduced by new developers include
reentrancy attacks, integer
overflows/underflows, unchecked call
results, gas estimation issues, and access
control flaws.

3. These issues often stem from a lack of
understanding of blockchain
architecture, improper use of security
libraries, and insufficient testing with
tools like Truffle Suite and Ganache.

1.

○

Overall Observations:

1. Mitigation Success: All three experiments showed successful mitigation
of the attacks, regardless of whether the attack was initially detected.

2. Attack Detection: Only Experiment 2 successfully detected the attack,
highlighting the need for improvement in detection mechanisms.

3. Response Times: The response time varied across experiments, with
Experiment 1 being the fastest and Experiment 3 the slowest.

4. Resource Utilization: Experiment 1 had the highest resource usage,
while Experiment 3 had the lowest.

5. Prevention Rate: Experiment 2 had the lowest prevention rate, while
Experiments 1 and 3 had similar rates around 75%.

The framework demonstrates strong mitigation but could improve in terms
of attack detection and optimizing resource usage for better prevention rates.

1. Usability of Smart Contract Languages: Solidity generally outperforms
languages like Pact and Liquidity in terms of usability for new developers.
Empirical studies show that Solidity allows for faster development of smart
contracts, particularly due to its simplicity and the wide array of supporting
tools. However, while Solidity enables quicker implementation, it has
drawbacks in debugging and securing contracts, making it easier to introduce
errors. Conversely, languages like Pact and Liquidity offer stronger formal
verification features but pose a steeper learning curve.

2. Common Security Issues Faced by New Developers: New smart
contract developers frequently introduce several security vulnerabilities,
including:

● Reentrancy attacks: Overlooking vulnerabilities where an external
contract can repeatedly call the original function.

● Integer overflows/underflows: Failing to account for arithmetic
boundaries, leading to faulty operations.

● Unchecked call results: Neglecting to verify contract call success,
increasing risk.

● Gas-related issues: Poor estimation of gas requirements can cause
contract failures in the Ethereum Virtual Machine (EVM).

● Access control vulnerabilities: Improper management of permissions
exposes functions to unauthorized access.

These security issues often stem from limited knowledge of blockchain
architecture, misuse of security libraries, and insufficient testing with tools.

The experiments demonstrated that the five-layer security framework for smart contracts is
effective in mitigating a range of common vulnerabilities, including reentrancy attacks,
integer overflows, and gas limit breaches. While the framework consistently succeeded in
mitigating attacks, it showed variability in attack detection, with only one experiment
successfully identifying the threat before mitigation. Resource utilization and prevention
rates also fluctuated, suggesting areas for improvement in efficiency. Overall, the framework
provides strong defense mechanisms, but enhancing early detection and optimizing resource
use will further solidify its effectiveness in securing smart contracts under real-world
conditions.

Abstract

Problem Statement

Background and Method of Approach Results

Conclusion

IEEE RTC 2024 - October 8-10, 2024 - IIT, Chicago, IL, USA

Approach: A Five-Layer Security Framework for Smart
Contracts:
Five-Layer Security Framework for Smart Contracts
This framework focuses on secure smart contract development and testing using the
Truffle Suite and Ganache. The key layers are:

1. Library Selection & Due Diligence: Address the lack of standard libraries and
perform static/dynamic analysis for vulnerabilities. Secure options like
OpenZeppelin are available but require thorough testing.

2. Performance & Resource Issues: Consider EVM limitations, such as debugging,
inefficiency, and stack size.

3. Tool Selection: Choose tools for performance optimization and testing, like Truffle
and Ganache.

4. Sandbox Testing: Test the contract in a controlled environment before deployment.
5. Deployment & Monitoring: Ensure proper deployment and continuous

monitoring.

Fig. 2. Simulated Experiments with prevention rate

Fig. 1 Secure Smart Contract Framework

Fig 3. Code to run the experiments in Python

