& IEE

Securing the Smart Contract:

A Framework on the Security of Smart Contracts Utilizing Solidity

Makar, Brendan®

Oakland University, Department of Computer Science and Engineering

Abstract

Background and Method of Approach

SEGUIR VIRTUTE
E CANOSCENZA

With the advent of Bitcoin and blockchain technology, numerous 1. Blockchain technology enables .
th i - - . . . Approach: A Five-Layer Security Framework for Smart Overall Observations:
platforn?s have em.er'ged with innovative use c.ases beyo.nd serv.mg as decentralized, secure transactions, with PP Yy Yy o | o
alternatives to traditional currency. One prominent application 1s the , . Contracts: 1. Mitigation Success: All three experiments showed successful mitigation
development of smart contracts, particularly on Ethereum, the second Ethereum CIMCIZIng as a leadlng of the attacks, regardless of whether the attack was initially detected.
most popular blockchain platform. Ethereum's smart contracts leverage platform for smart contract Five-Layer Security Framework for Smart Contracts 2. Attack Detection: Only Experiment 2 successfully detected the attack,
coding languages like Solidity and Vyper, with Solidity being the most development. Soli dity, Ethereum's This framework focuses on secure smart contract development and testing using the highlighting the need for improve.ment ig detection mech.anisms. |
widely adopted. However, given the novelty of blockchain, smart primary language, is popular for its Truftle Suite and Ganache. The key layers are: 3. Eesponse TtlTebS:' Thehre;ponse tn;leEvarled acmts; e;(pe?ments, with
L. ’ , , xperimen eing the fastest and Experiment 3 the slowest.
contracts, and Solidity, there are concerns about the lack of a : .. . 1. Library Selection & Due Diligence: Address the lack of standard libraries and P e e S . P .
: . . . SlmphClty and extensive tool support, _ . . o . . 4. Resource Utilization: Experiment 1 had the highest resource usage,
standardized security framework for secure coding practices. perform static/dynamic analysis for vulnerabilities. Secure options like hil . 3 had the 1
. - - ST allowing faster development compared OvenZenneli able b thoroueh test while Experiment 5 had the lowest.
Additionally, ﬂ.le Ethereum Virtual Machlne (EVM) has limitations, . L penZeppelin are available but require thorough testing, 5. Prevention Rate: Experiment 2 had the lowest prevention rate, while
such as stack size and standards, which present challenges for to languages like Pact and Liquidity. 2. Performance & Resource Issues: Consider EVM limitations, such as debugging, Experiments 1 and 3 had similar rates around 75%.
developers. ‘ 1di . 1nefficiency, and stack size. L . .
b HOWGVGI‘, while SOhdlty offers ease of ; Tool Sel Z’ ch e f ¢ o q , e Truffl The framework demonstrates strong mitigation but could improve in terms
The paper aims to establish a practical and user-friendly security use, 1t also presents challenges n 0:1) G ¢ echlon. 0ose tools for performance optimization and testing, fike Iruftle of attack detection and optimizing resource usage for better prevention rates.
framework to support the development of secure smart contracts on : PR : and Lyanache.
Ethereum, focusing on Solidity. The research covers current works in debugging and security, increasing the 4. Sandbox Testing: Test the contract in a controlled environment before deploymer* - o = -
the field, guidance on selecting secure libraries, and methods for risk of errors. 5 Deployment & Monitoring: Ensure proper deployment and continuous attack detection mitigation_succe response_time resource_utilizat prevention_rate
identifying and mitigating vulnerabilities. The framework is tested 2. Developing secure smart contracts using monitoring. Exper!ment i [rasure aliecess U:5] 33.15 .11
using open-source tools like Truffle Suite and Ganache to ensure Solidity presents significant challenges. SXparngite. |-Uccoss IIECEsS e (S S
: . Experiment3 Failure Success 3.89 63.93 75.02
robust smart contract development on the Ethereum blockchain. Solidity’s ease of use can lead to errors
Problem Statement durlng the development processj Flg 2. Simulated EXperlmentS with preventlon rate
particularly in debugging and security,
1. Usability of Smart Contract Languages: Solidity generally outperforms : cqeg import random
Y Hract Lanstas e Y OUp Common security vulnerabilities
languages like Pact and Liquidity in terms of usability for new developers. . . = Function to simulate the experiment results
o . o def simulate experiment()
Empirical studies show that Solidity allows for faster development of smart introduced by new developers include % EEsbui e e Siu¢ S Skt et R e (S cols i Bt
contracts, particularly due to its simplicity and the wide array of supporting reentrancy attacks, integer mitigation_success = random choice(["Success”. "Failure"]
tools. HOWGVGI', while SOlldlty enables quicker implementation, 1t has OVGI’ﬂOWS/undGI’ﬂOWS, unchecked Call Secure Smart ;?f;:_im-Iii:r;:;cfc.:-.e‘:‘;.‘E:.E -z-r.j..’zz;; r-—-pc::.-: t.::.-.—= :,;::;..:ic_:- ri.:j;-:;‘::.:::’;z: : ;;-iij_tntion rats
. P r;c..r.:-:-._—z_“:.::zor.:;c;_r:;;2513; ..:.:’o::r.-fvi ..ZC). .2,“= ?:5-..0'.;:.;; L’.- :;::3;. D2 ;;r.-.: b:’: -:.-z::. 10C
drawbacks n debugglng and se.curlng COl’ltI'aC'tS, maklng It casier to ll’ltI'OdllCG reSUItS, gaS eStlmatIOIl ISSU€S, and dCCCSS contTaCt Framewor prevention rate = round(random uniform(30, 100}, 2) = Pravention '.:’.-stieme-:-r S and 100%%
errors. Conversely, languages like Pact and Liquidity offer stronger formal |
. . control flaws. =
verification features but pose a steeper learning curve. attack_detection”: amack_dstection.
3. These issues often stem from a lack of msem el gy
2. Common Security Issues Faced by New Developers: New smart . . rste Gl orea;.:::-:-_:t..t:.:::’.:or..
contract developers frequently introduce several security vulnerabilities, understanding ot blockchain FrETEERRaEE TR
including: architecture, improper use of security T T
. SxRperiment .1 = :imul2le sxperimen
e Reentrancy attacks: Overlooking vulnerabilities where an external libraries, and insufficient testing with experkhems 2 — simulie expéximen
contract can repeatedly call the original function. ' ' :
P y g , _ , tools like Truffle Suite and Ganache. Fig. 1 Secure Smart Contract Framework import pandas 2s pd
e Integer overflows/underflows: Failing to account for arithmetic e
boundaries, leading to faulty operations. S i s D e s
e Unchecked call results: Neglecting to verify contract call success, (L) accounts e 1 e e S N R A
import ace_tools 23 to0ls; tools display_dataframes to_user(name="Experiment Simulation Results”, dataframe=experiment data

increasing risk.

e Gas-related issues: Poor estimation of gas requirements can cause Fig 3. Code to run the experiments in Python

contract failures in the Ethereum Virtual Machine (EVM).
e Access control vulnerabilities: Improper management of permissions

MNEMONIC

ALCSE:S EM AN L

PDx627306090ababB3A6el1400e9345bC60Cc78a8BBETS Y7 99 .46 ETH

Conclusion

The experiments demonstrated that the five-layer security framework for smart contracts 1s

exposes functions to unauthorized access.

B AN X

100.00 ETH

CRESS

OxT 17 FfS21S1EDEFGCT7334FADOBACSTOLDT77216D732

These security issues often stem from limited knowledge of blockchain effective 1n mitigating a range of common vulnerabilities, including reentrancy attacks,

BALAM x

100.00 ETH

ALOWLEE

OxCSTfdfFf4076b8F3AS5357CcS5E395ab9768B5B54098FefT

architecture, misuse of security libraries, and insufficient testing with tools.

integer overflows, and gas limit breaches. While the framework consistently succeeded 1n

mitigating attacks, 1t showed variability 1n attack detection, with only one experiment
Figure 4: How the Ganache Ul is laid out for easy access to your blockchain and smart contracts

successfully identifying the threat before mitigation. Resource utilization and prevention

rates also fluctuated, suggesting areas for improvement 1n efficiency. Overall, the framework
provides strong defense mechanisms, but enhancing early detection and optimizing resource
use will further solidify its effectiveness in securing smart contracts under real-world

conditions.

|IEEE International Conference

IEEE RTC 2024 - October 8-10, 2024 - lIT, Chicago, IL, USA

